UT Southwestern Medical Center

Ophthalmology

Where Are We With Suprachoroidal Delivery?

Judy E. Kim, MD, FARVO, FASRS

Jean and Tom Walter Distinguished Chair of Ophthalmology in Honor of James P. McCulley, MD Professor, Department of Ophthalmology Vice-chair, Education Medical Director, Clinical Research UT Southwestern Medical Center, Dallas, TX

Financial Disclosure

• Advisory Board/Consultant:

 Adverum, Alcon, Alimera, Amgen, Apellis, Bausch + Lomb, Clearside Biomedical, EyePoint, Genentech, Neurotech, Outlook, Regeneron

Suprachoroidal Drug Delivery

- Suprachoroidal space (SCS) is a potential space which expands with the introduction of fluid
- Injection into the SCS presents an opportunity for targeted delivery of high levels of injectate directly to affected chorioretinal

tissues

TARGETED for efficacy COMPARTMENTALIZED for safety **BIOAVAILABLE & PROLONGED DRUG LEVELS**

for durability

SCS injection of dye shows posterior circumferential spread around the globe¹

Cross-section: Injectate spreads from scleral spur towards macula

Injection Anterior Site Spreading fluorescing dye visible in SCS Posterior Top View: Injectate immediately spreads from injection site to posterior tissues

Sources: Clearside data on file | 1. Marcus, et. al, Retina Society 2021 Comparison of Suprachoroidal and Intravitreal Injection Flow Mechanics Analyzed via Multimodal Imaging

IOP > Anterior SCS Pressure > Posterior SCS Pressure A Driving Force for Uveoscleral Outflow

Table 1. Spontaneous pressure measurements (mm Hg)

	Anterior cannula	Posterior cannula	Sponge		
IOP	9.4 ± 0.9 (9)*	9.2 ± 0.9 (10)†	9.3 ± 1.2 (7)‡		
SCSP	8.4 ± 0.9 (9)*	5.8 ± 0.5 (10)†	5.1 ± 1.2 (7)‡		
IOP-SCSP	0.9 ± 0.2 (9)§ [∥]	$3.5 \pm 0.5 (10)$ §	$4.2 \pm 0.5 (7)^{ }$		

Each value indicates mean \pm SE. () = n. 1OP: intraocular pressure. SCSP: suprachoroidal space pressure. *P < 0.05, $\uparrow \ddagger P < 0.001$ (paired student t-test). $\$^{\parallel}P < 0.001$ (unpaired student t-test).

(NTRAOCULAR PRESSURE (mm Hg)

For small molecule suspensions, preclinical testing shows 11X greater levels in posterior tissues when delivered to SCS vs IVT at equivalent doses

SCS / IVT Ratios for injected triamcinolone acetonide, by tissue type (4 mg / eye)

SCS / IVT Ratios for injected axitinib, by tissue type (1 mg / eye)

Values are area under the curve ratios (SCS / IVT) over 7 days in rabbit eyes

Triamcinolone acetonide injectable suspension for suprachoroidal use is FDA approved for the treatment of uveitic macular edema Axitinib injectable suspension for suprachoroidal use (CLS-AX) is currently under evaluation in clinical trials.

Leroy Muya, Viral Kansara, Megan E. Cavet, and Thomas Ciulla.Suprachoroidal Injection of Triamcinolone Acetonide Suspension: Ocular Pharmacokinetics and Distribution in Rabbits Demonstrates High and Durable Levels in the Chorioretina.Journal of Ocular Pharmacology and Therapeutics.ahead of printhttp://doi.org/10.1089/jop.2021.0090

Viral S. Kansara, Leroy W. Muya, Thomas A. Ciulla; Evaluation of Long-Lasting Potential of Suprachoroidal Axitinib Suspension Via Ocular and Systemic Disposition in Rabbits. *Trans. Vis. Sci. Tech.* 2021;10(7):19. doi: <u>https://doi.org/10.1167/tvst.10.7.19</u>.

Different Programs Developing Suprachoroidal Delivery Methods

FDA approved and commercially available for SCS injection of triamcinolone acetonide for uveitic macular edema

Suprachoroidal delivery methods include microneedle injection and microcatheterization

SCS Injection with the SCS Microinjector®

• Two 30-gauge needles of two lengths included to accommodate variation in patient anatomy

SCS Microinjector[®] Syringe

Injection Technique

REVIEW

SUPRACHOROIDAL SPACE INJECTION TECHNIQUE

Expert Panel Guidance

Wykoff, Charles C. MD, PhD*; Avery, Robert L. MD*; Barakat, Mark R. MD*,5; Boyer, David S. MD*; Brown, David M. MD*; Brucker, Alexander J. MD**; Cunningham, Emmett T. Jr MD, PhD, MPH^{++,++,55,11}; Heier, Jeffrey S. MD***; Holekamp, Nancy M. MD^{+++,+++}; Kaiser, Peter K. MD⁵⁵⁵; Khanani, Arshad M. MD, MA^{111,****}; Kim, Judy E. MD⁺⁺⁺⁺; Demirci, Hakan MD⁺⁺⁺⁺; Regillo, Carl D. MD⁵⁵⁵⁵; Yiu, Glenn C. MD, PhD¹¹¹¹; Ciulla, Thomas A. MD, MBA^{*****}

Retina. 2024 Jun 1;44(6):939-949.

A beginner's guide to suprachoroidal injections

They require a different skill set than intravitreal injections. Here's a description of the technique.

By Carol Villafuerte-Trisolini, MD, and Glenn Yiu, MD, PhD

DECEMBER 23, 2023

Suprachoroidal Injection Technique Using the SCS Microinjector®

Perpendicular

Hold the microinjector **perpendicular** to the ocular surface

Ensure firm contact with sclera by maintaining a **dimple** throughout injection

Slow

Inject **slowly** over 5 – 10 seconds

Response from Physicians Using Suprachoroidal Therapy

- "Nearly all participants (92%) found the injection procedure relatively easy post-training, with most (75%) procedurally comfortable after completing 2-5 injections."
- "... this treatment has potential applications for patients with other ophthalmic conditions..." besides uveitic macular edema.

BMC Part of Springer Nature

Early adoption of triamcinolone acetonide suprachoroidal injection for uveitic macular edema: a physician survey

Henry, C.R., et al. BMC Res Notes 17, 317 (2024)

treatments. FDA = US Food and Drug Administration; IVT = intravitreal; SCS-TA = acetonide suprachoroidal injection; UME = uveitic macular edema

Studies Underway Using the SCS Microinjector

Triamcinolone acetonide injectable suspension for suprachoroidal use

LOCATION	INDICATION	PRE-CLINICAL	PHASE 1	PHASE 2	PHASE 3	APPROVAL
United States	Uveitic Macular Edema ¹					
Australia Singapore	Uveitic Macular Edema ²					
China	Uveitic Macular Edema ²					
Asia Pacific ex- Japan	Diabetic Macular Edema ²					

Research and Clinical Development Programs

		· · ·						
THERAPEUTIC	MECHANISM	INDICATION	PRE-CLINICAL	PHASE 1	PHASE 2	PHASE 3	APPROVAL	COMPANY
CLS-AX (axitinib)	Tyrosine Kinase Inhibitor	Wet AMD						
Undisclosed	Improve choroidal perfusion	Geographic Atrophy (GA)						
Undisclosed	Modulate pro- inflammatory cells	Geographic Atrophy (GA)						

Suprachoroidal CLS-AX Phase 2b Topline Data Results in Wet AMD

- Axitinib: a tyrosine kinase inhibitor (TKI) approved to treat renal cell cancer
- Achieves pan-VEGF blockade, inhibiting VEGF receptors-1, -2, and -3
- Broad VEGF blockade may have efficacy advantages over existing retinal therapies by acting at a different level of the angiogenesis cascade
- May benefit patients who sub-optimally respond to current, more narrowly focused anti-VEGF therapies

ODYSSEY Trial for nAMD Design: Axitinib

TKI with pan-VEGF inhibition

[#]Participants can be re-dosed with CLS-AX up to every 12 weeks; All arms are sham controlled

* Disease Activity Assessments (DAA): Conducted at Week 12 through 32 to determine need for supplemental treatment.

- # In CLS-AX arm, following 3 loading doses of aflibercept and initial dose of CLS-AX at Baseline, participants will receive CLS-AX at least every 24 weeks unless more frequently required based on DAA;
- if disease is active and participant is <12 weeks since last CLS-AX injection, participant receives dose of aflibercept;
- if disease is active and participant is >12 weeks since last CLS-AX injection, participant receives dose of CLS-AX.
- In aflibercept arm, following 3 loading doses of aflibercept, participants will receive aflibercept on fixed dosing regimen every 8 weeks unless more frequently required based on DAA; if disease is active, participant receives dose of aflibercept.

 Achieved Primary Objective: <u>Stable BCVA to Week 36 in difficult-to-treat</u> nAMD participants with confirmed activity

Calculation accounts for missed treatments; time of initial administration of study drug shown as month 0 on figure. Intervention-free rate calculation: if participant received intervention at a study visit, those were reflected in the count at the following study visit.

ODYSSEY Data Support CLS-AX Progressing to Phase 3

 Achieved Primary Objective: <u>Stable</u> BCVA to Week 36 in difficult-to-treat nAMD participants with confirmed activity

 67% injection free at 6 months
Injection frequency over all reduced by nearly 84%

Intervention-Free Rates By Week Up to Each Visit

Calculation accounts for missed treatments; time of initial administration of study drug shown as month 0 on figure. Intervention-free rate calculation: if participant received intervention at a study visit, those were reflected in the count at the following study visit.

Preliminary Topline Results Subject to Change

No Ocular SAEs and No Treatment-Related SAEs

- No drug or procedure-related ocular SAEs
- No reported drug or procedure-related systemic SAEs
- No endophthalmitis
- No retinal vasculitis

Only Phase 2 trial in wet AMD with repeat TKI dosing data to potentially de-risk Phase 3 design

Two pivotal, non-inferiority Phase 3 trials being planned to start 2H 2025 Two arms with ~225 participants per arm: CLS-AX 1 mg vs aflibercept 2 mg

Abbreviations: AE = adverse event; SAE = serious adverse event; TEAE = treatment-emergent adverse event.

Preliminary Topline Results Subject to Change Suprachoroidal Gene Therapy with ABBV-RGX-314 for Neovascular AMD: The Phase 2 AAVIATE® Study

ABBV-RGX–314 for Treatment of Neovascular Age-related Macular Degeneration (nAMD)

ABBV-RGX-314 PRODUCT CANDIDATE

Mechanism of action:

Reducing leaky blood vessel formation by giving ocular cells the ability to produce an anti-VEGF fab

More efficient gene delivery to the RPE¹

1. Vandenberghe et al. 2011 Science Translational Medicine. AAV: Adeno-Associated Virus

+

Leveraging current standard of care in transgene

- FDA-approved mAbs and mAb fragments that inhibit VEGF are the current standard of care for treatment of nAMD
- ABBV-RGX–314 gene encodes an anti-VEGF mAb fragment (fab)

ABBV-RGX-314: AAV8 encoding anti-VEGF fab

Potential for long-term therapeutic anti-VEGF expression

AAVIATE[®]: ABBV-RGX-314 Phase II Clinical Trial in nAMD

Primary Objective

 To evaluate the mean change in BCVA for ABBV-RGX-314 compared with ranibizumab monthly injection at Month 9

Secondary Objectives

- Safety and tolerability of ABBV-RGX-314
- Change in central retinal thickness (CRT) as measured by Spectral Domain Optical Coherence Tomography (SD-OCT)
- Additional anti-VEGF injections post-ABBV-RGX-314

Retreatment Criteria

Based on worsening vision and/or fluid

Subjects: 116 patients enrolled in Dose Levels 1-3

15 study sites across the United States

Route of Administration

In-office SCS Microinjector[™] delivers ABBV-RGX-314 to the suprachoroidal space

Key Inclusion Criteria

- Male or female ≥ 50 to 89 years of age
- Previously treated nAMD subjects with fluid on OCT at trial entry
- Documented response to anti–VEGF at trial entry (assessed by Reading Center)
- BCVA between ≤ 20/25 and ≥ 20/125 (≤ 83 and ≥ 44 Early Treatment Diabetic Retinopathy Study [ETDRS] letters) in the study eye
- Phakic or Pseudophakic

AAVIATE®: Study Design

2. Short-course prophylactic ocular steroids included either periocular steroid or topical steroid

3. Additional anti-VEGF Run-in Injections given at W-4 and W4

NAb+ = AAV8 neutralizing antibody positive; NAb- = AAV8 neutralizing antibody negative/low.

Dose Levels 1–3: No Anti-VEGF Injections over 6 Months

Mean BCVA and CRT from Day 1

Data cut: November 06, 2023. Cohort 6 (DL3) patients were randomized at D1 and received additional anti-VEGF run-in injections at W-4 and W4.

Pitcher, Hawaiian Eye and Retina 2024

Dose Level 3: Injections Pre and Post ABBV-RGX-314 (n=56) – 6 Month Data

Change in Annualized Injection Rate -80.0%

Data cut: November 06, 2023.

1. Protocol specified Ranibizumab injections included either 1 run-in injection or 2 run-in injections and 1 post ABBV-RGX-314 injection.

Month 6

O Visit with No Injection

Dose Level 3: Injections Pre and Post ABBV-RGX-314 (n=56) – 6 Month Data

Change in Annualized Injection Rate **-80.0%**

Data cut: November 06, 2023.

1. Protocol specified Ranibizumab injections included either 1 run-in injection or 2 run-in injections and 1 post ABBV-RGX-314 injection.

Summary of Interim Results from the Phase II AAVIATE® nAMD Study

ABBV-RGX-314 Dose Levels 1-3 (n=106): 6 Month Results

- Suprachoroidal ABBV-RGX-314 has been well-tolerated
- Zero cases of IOI in subset of Dose Level 3 with short-course prophylactic topical steroids
- ABBV-RGX-314 continues to demonstrate stable vision and retinal thickness, with a meaningful reduction in

treatment burden with the highest reduction seen in Dose Level 3:

- 80% reduction in annualized injection rate
- 50% injection-free

Dose Level 3 continues to show encouraging interim results with a well-tolerated profile, including zero cases of IOI with short-course prophylactic topical steroids

Suprachoroidal Delivery of Investigational ABBV-RGX-314 for Diabetic Retinopathy Without CI-DME: The Phase II ALTITUDE® Study

ALTITUDE®: ABBV-RGX-314 Phase II Clinical Trial in Diabetic Retinopathy

Primary Objective

 Evaluate proportion of patients with ≥2-step improvement in severity on the Diabetic Retinopathy Severity Scale (DRSS) at one year

Secondary Objectives

- Safety and tolerability of ABBV-RGX-314
- Development of DR-related ocular complications
- Need for additional standard of care interventions

Subjects: 99 patients enrolled in Cohorts 1-5

- 79 ABBV-RGX-314; 20 observation control
- 21 study sites across the United States

Route of Administration

In-office SCS Microinjector[™] delivers ABBV-RGX-314 to the suprachoroidal space

Key Inclusion Criteria

- Male or female ≥ 25 to 89 years of age with DR secondary to diabetes mellitus Type 1 or Type 2
- Moderately Severe NPDR, Severe NPDR, or Mild PDR (DRSS levels 47-65)
- No active CI-DME, CST < 320 μm</p>
- Vision of 20/40 or better (≥ 69 Early Treatment Diabetic Retinopathy Study [ETDRS] letters) in the study eye
- No anti-VEGF injection(s) in prior 6 months

ABBV-RGX-314 ALTITUDE® Study Design

Moderately Severe NPDR, Severe NPDR, or Mild PDR Patients without active CI-DME

a. Dose escalation safety review to occur two weeks after final subject in each cohort has been dosed.

SCS: Suprachoroidal Space; NAb+ = AAV8 neutralizing antibody positive; NAb- = AAV8 neutralizing antibody negative/low; Y1 = 48 weeks; NPDR: Non-proliferative Diabetic Retinopathy; PDR: Proliferative Diabetic Retinopathy

Summary of DRSS Change With Dose Levels 1 and 2 Compared to Control at 1 Year

Data cut: September 25, 2023.

a. During an interim central reading center masked adjudication, 1 patient's DRSS grade at baseline was updated from Grade 47 to Grade 65.

b. One patient in each Dose Level missed their 1-Year visit, so their 6-month results were used.

Summary of ABBV-RGX-314 1 Year Results from the Phase II ALTITUDE DR Study: Dose Level 1 and 2

- Safety
 - Suprachoroidal ABBV-RGX-314 continues to be well-tolerated in Dose Levels 1 and 2 (n=50) through 1 Year
 - No prophylactic corticosteroids administered in Dose Levels 1 and 2
 - A few cases of mild intraocular inflammation were observed; resolved with topical corticosteroids
- Efficacy Endpoints
 - One-time in-office injection of investigational ABBV-RGX-314 demonstrated clinically meaningful improvements in disease severity and reduction of VTEs in NPDR patients
 - In Dose Level 2 patients with baseline NPDR (n=24):
 - 100% demonstrated stable to improved disease severity
 - 70.8% achieved any disease improvement vs. 25.0 % in Control
 - O% worsened ≥2 steps vs. 37.5 % in Control
 - 4.2% developed VTEs vs. 37.5% in Control

Dose Level 2 prevented disease progression in all NPDR patients and reduced Vision-Threatening Events by 89%

Multiple Partnerships Expand Utilization of Suprachoroidal Delivery Using the SCS Microinjector

SCS Microinjector [®] Partner Clinical Development Programs								
THERAPEUTIC	ТҮРЕ	INDICATION	IND- ENABLING	PHASE 1	PHASE 2	PHASE 3	APPROVAL	
Bel-Sar	Virus-like Drug Conjugate	Choroidal Melanoma	CoMpas					
ABBV- RGX-314	AAV Gene Therapy	Diabetic Retinopathy w/o DME		ALT	ITUDE			-
ABBV- RGX-314	AAV Gene Therapy	Wet AMD		AA	VIATE			
Avoralstat	Plasma Kallikrein Inhibitor	DME						

Ocular Oncology belzupacap sarotalocan 2024: Actively enrolling Phase 3

Gene Therapy

adeno-associated virus-based gene therapy Q4 2024:

- Wet AMD: Enrolling new cohort at dose level 4
- DME: Enrolling new cohort at dose level 4

1H 2025: Initiate global pivotal trial in DR

Plasma Kallikrein Inhibitor

- 2024: Conduct formulation and nonclinical work
- **2025:** Begin clinical trials

UT Southwestern Medical Center Ophthalmology